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A B S T R A C T

The traditional Capital Asset Pricing Model, because of its
conceptual and empirical disadvantage, needed some possible
extension which led to the inclusion of higher moments in the
model. Past studies showed that higher moments i.e. skewness
and kurtosis, contributed to the risk premium of an asset. In the
present study an attempt was made to compare unconditional
and conditional higher moment Capital Asset Pricing Models
and find the most suitable among these in context of Indian
stock market. For illustrating the better model, the data of the
companies listed in S&P BSE 500 Index has been considered.
Akaike Information Criteria and Bayesian Information Criteria
values were used for the selection of better model among these
two models. The results revealed that conditional higher
moment model gave better results as compared to unconditional
higher moment model.

Keywords: Skewness, kurtosis, Akaike Information Criteria,
Bayesian Information Criteria.

1. INTRODUCTION

William Sharpe (1994) proposed the Capital Asset Pricing Model (CAPM)
that described the relationship between the expected return and risk related
to an asset. CAPM assumed that a positive correlation exists between the
return on an asset and the risk (beta coefficient) related with that return.
The systematic risk or market risk (represented by â) was considered as an
important factor by CAPM for the assessment of the asset price. CAPM
assumed that a positive linear relationship exists between the asset’s return
and systematic risk which could be sufficient to explain the cross­sectional
returns.

CAPM had various application, it not only assigns capital for
machineries and factories (real investment) but could also be used to assigns
funds for bonds and stocks (financial investment) etc. It could also be used
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for taking decisions related to the evaluation of a portfolio performance,
investment capital expenditure, financing and corporate restructuring. The
guidelines related to the fair price issue could be provided with the help of
CAPM. It could also be used for the determination of the expected rate of
return on a stock and to judge whether the stock is overvalued or
undervalued. While studying about capital market efficiency, the relationship
between risk and return is considered as an important key point.

One of the important assumptions considered by CAPM was that the
assets with higher risk will yield higher returns than the assets with lower
risk. The Sharpe (1964) and Lintner’s (1965) version of CAPM assumed
that the capital market is perfect i.e. at the same interest rate, an investor
can borrow or lend money. The other assumptions for the CAPM are
identical expectation of investors with respect to assets (homogeneity),
absence of the transaction cost and taxes, normal distribution of returns
and the price of a stock could not be influenced by individual alone.

The version of CAPM developed by Sharpe and Lintner considered
that the expected rate of return is related to the systematic risk. One of the
main assumption for CAPM to hold was that the returns should be normally
distributed which is crucial assumption. Various studies showed the
returns’ distribution was non­normal especially in high frequency data.
Also there were some drawbacks of the model which caused the researchers
to focus their attention towards the higher moments i.e. skewness and
kurtosis (the third and fourth moment).

Kraus and Litzenberger (1976) and others tested the extended form of
CAPM i.e. the three moment CAPM by including the coskewness in asset
valuation models and obtained mixed results. The conditional skewness
captured asymmetry in risk, particularly downside risk and explained the
cross­sectional variation of returns. The four moment CAPM was derived
by Fang and Lai (1994) which incorporated cokurtosis besides the
covariance and coskewness in the model. The fourth moment i.e. cokurtosis
well explained the generating process of return in future markets.

The econometric equation of the Unconditional Higher Moment
CAPM using the Generalized Method of Moments (GMM) specification
is given as:

� �� � � � � �2 3ˆ ˆˆ( ) ( ) ( )it imt mt imt mt imt mt tR a R R R µ

where R
it
 denotes the excess return on stock i over month t,

a denotes the constant term,

R
mt

 denotes the excess market return over month t,
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�̂imt
denotes the systematic risk (beta) i.e. covariance,

�̂ imt  and �̂imt
denotes the coskewness (lambda) and cokurtosis

(gamma) respectively.

For the estimation using GMM, excess market return and lagged excess
market returns were used as instrumental variables.

The introduction of the Autoregressive Conditional Heteroscedasticity
/Generalized Autoregressive Conditional Heteroscedasticity (ARCH/
GARCH) process by Engle (1982) and Bollerslev (1986) gave importance
to the testing, estimation and modeling of time varying volatility and
conditional CAPM. The model tested using ARCH process provided better
evidence of the risk­return relationship. The conditional model of Pettengill,
Sunderam and Mathur (1995) examined the risk­return relationship and
provided stronger results.

The econometric equation of the Conditional Higher Moment CAPM
using the following GARCH(1,1) specification is given as:

� � � �� � � � � � � �2 3
1 1 1 1
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Where R
it
 denotes the excess return on stock i over month t,

a denotes the constant term,

R
mt

 denotes the excess market return over month t,

�̂imt
 denotes the systematic risk (beta) i.e. conditional covariance,

�̂ imt
 and �̂imt

denotes the conditional coskewness (lambda) and

conditional cokurtosis (gamma) respectively.

The skewness and kurtosis could not be diversified by increasing the
size of the portfolio, hence, this non diversifiable property skewness and
kurtosis became important to be considered for valuation of the asset.
Earlier in CAPM it was assumed that the risk related with an asset doesn’t
differ with respect to time. Later it was obtained by the researchers that
the covariance, coskewness and cokurtosis risk vary with respect to time
and so are their prices, which suggested the relationship between
coskewness and cokurtosis vary with respect to time.

2. LITERATURE REVIEW

Andor et al. (1999) performed the study using the CAPM for the Hungarian
capital market using regression technique for analyzing the company’s risk
and their average return. The data of 17 Hungarian companies listed in
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Budapest Stock Exchange for the period from July 1991 to June 1999 was
used in the study and concluded that there existed positive correlation
between beta and actual returns. In other words, CAPM was obtained
suitable for the Hungarian capital market by them.

Gunnlaugsson (2004) performed the study to check the applicability
of CAPM for Icelandic stock market using Ordinary Least Square (OLS)
for estimating the alpha and beta coefficients as well as nonsystematic risk.
Using the monthly data of 27 stocks listed in Iceland Stock Exchange (ICEX)
for the period from January 1990 to May 2004, it was proved that a strong
relationship exists between the risks and the stock returns. Also it was
concluded by them that higher (lower) risk yields higher (lower) returns
and CAPM works effectively for the ICEX.

Michaildis et al. (2006) performed the study to test the applicability of
CAPM on Greek security market. Using the weekly data of 100 companies
listed on the Athens Stock Exchange (ASE) for the period from January
1999 to December 2002, it was concluded by them that CAPM was not
applicable for ASE as the theory of higher (lower) risk yielding higher
(lower) returns was not achieved for the same.

Refai (2009) performed the study to establish the relationship between
risk and returns in the Jordan Stock Exchange. OLS regression was used to
estimate the risk and the version of M­GARCH for time­varying risk. Using
the monthly data for the period from December 1999 to October 2008, it
was obtained that CAPM might not be applicable for the Jordan Stock
Exchange as time­varying risk obtained by M­GARCH shows greater
variance as compared to OLS beta and the hypothesis of (positive)
relationship between risk and return was being rejected.

Paul and Asarebea (2013) performed the study to test the applicability
of CAPM in India with reference to National Stock Exchange (NSE) using
the monthly data of 5 companies listed in NSE for the period from 2005 to
2009. It was obtained by that CAPM adequately explained the risk return
relationship and it validates the theory that high (low) risk yields high
(low) returns.

Shamim et al. (2014) performed the study to test the applicability of
the CAPM for Karachi Stock Exchange (KSE). The Augmented Dickey
Fuller (ADF) unit root test was used for testing and making the series
stationary. Using the data of companies from different sectors listed in KSE
for the period from 2008 to 2012 and applying the OLS regression for the
estimation of risk coefficients and paired t­test for the comparison between
actual and expected returns, it was obtained that CAPM is not valid for
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KSE as single risk factor model is not sufficient to predict the expected
return accurately.

Choudhary and Apoorva (2018) performed the study to test the
applicability of CAPM in Indian stock market. Using OLS regression for
estimation of risk coefficients for the monthly data of five PSU’s listed in
Bombay Stock Exchange (BSE) for the period from January 2016 to
December 2017, it was concluded that the CAPM is not applicable for BSE
and also the theory that high (low) risks yields high (low) returns was
contradicted by the study.

Xiao et al. (2019) performed the study to test the effectiveness of CAPM
in China with reference to Shanghai Stock Exchange using the two tests:
time series test and cross sectional test. Using the weekly data of 18
industries for the period from June 2016 to December 2018 it was concluded
that CAPM is not effective for Shanghai Stock Exchange.

The objective of the present study is to estimate and compare the
unconditional and conditional higher moment CAPM models for the Indian
stock market and to find the better model between the two.

3. DATA DESCRIPTION AND METHODOLOGY

The data considered for the present study is secondary in nature which
consists of the monthly returns data of 11 stocks listed in S&P BSE 500
Index for the period from January 1993 to March 2015. Only those stocks
have been considered whose data was available for the entire period. The
discrete monthly returns of the stocks were taken as the dependent variable
and the market return as the independent variable.

For the present study, the higher­moments, beta, lambda and gamma
i.e. covariance, coskewness, and cokurtosis risks were estimated. Before
estimating the model, firstly, the normality test i.e. Kolmogorov Smirnov
(KS) test was done to examine the normality of the residuals for which the
results showed that the distribution of residuals is not normal. Hence the
use of GMM is appropriate. Secondly, to check whether the series is
stationary or not, the unit root test using ADF test was done. For detecting
the presence of ARCH effects the Heteroscedasticity test was carried out.
The process of model validation was carried out which showed that the
models fitted achieved its intended purpose. Finally the model selection
was done using the two important information criteria namely Akaike
Information Criteria and Bayesian Information Criteria (AIC and BIC).

In the first model i.e. Conditional Higher Moment CAPM, for the
estimation of conditional higher­moments, GARCH (1,1) specification was
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used to obtain the result. In the second model i.e. Unconditional Higher
Moment CAPM, on a sample of 11 stocks, simple regression was applied
using GMM as the estimation technique. Then on the results obtained from
regression, rolling regression using 60 months rolling window with step
size 1 was used to obtain the rolling coefficients.

Rolling regression is a process often used in time series to test the
stability of the model parameters with respect to time by applying different
sampling periods. While running the rolling regression, a window size
and step size has to be chosen. The number of consecutive data points to
be used in each sample is known as window size while the number of
periods a window has to be advanced is known as step size.

GMM is a method used for estimating the parameters considered in
model. When the probability distribution is known, Maximum likelihood
(ML) estimation gave feasible results. However, in many cases, this
dependency becomes the weakness when the distribution is unknown and
the results obtained from ML are infeasible. GMM, which is also known
an asymptotic distribution free approach for the estimation of the
parameters, is preferred over ML estimation as GMM provides a way to
estimate the parameters merely based on the information concluded from
the given model.

Bollerslev (1986) and Taylor (1986) had independently introduced
GARCH process which allowed the conditional variance to depend on its
past lags. GARCH model is an extension of ARCH model. The GARCH
model is considered to be more parsimonious than ARCH model as it gives
better prediction and also permits wide range of behavior i.e. volatility.

Model validation is a process which compared the model output to
the independent real world observations. In other words, a process known
as model validation was used to confirm whether the model fulfils its
predetermined purpose or not. Model validation was done by comparing
the output attained by the model to another dataset termed as independent
experimental dataset. This experimental dataset is also known as train
dataset and the other one is known as test dataset.

Train dataset is the sample (independent) of data used for fitting the
given model while the test dataset is a subset used to test the
appropriateness of the model fitted for the trained dataset. The data used
in the train dataset cannot be considered in the test dataset. The percentage
usually taken for the test and train data set is 66:33, 70:30 or 80:20. In some
studies 50:50 is also considered.

AIC and BIC are the techniques used for the evaluation of goodness of
fit for the model as well as selecting the best model among the fitted
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different models. AIC is used to judge the quality of the model under
consideration, related to every other model fitted for same set of
observations while BIC is used for model selection based on information
theory but within the Bayesian context. The difference between BIC and
AIC is that BIC imposed greater penalty for the number of parameters
than AIC. The smaller value of AIC and BIC indicates the better model
among the models under consideration.

4. RESULTS AND ANALYSIS

For testing the normality, the linear model using OLS was fitted and then
the normality of residuals was administered using KS test. The p­value
obtained by using KS test showed that the residuals are non­normally
distributed (table 1). Since the residuals are non­ normally distributed,
hence GMM is preferable over OLS method for the estimation of the
parameters.

Table 1: Table representing different test statistics for checking the assumptions
for fitting of the Unconditional and Conditional Higher Moment CAPM

Variables Kolmogorov-Smirnov ADF Test for Heteroscedasticity test
Test for Normality Stationarity for ARCH effect

Statistic p-value t-Statistic p-Value R-square p-Value

Stock 1 0.139 <0.001 ­16.531 <0.001 0.066 0.097

Stock 2 0.106 <0.001 ­15.474 <0.01 2.416 0.020

Stock 3 0.092 <0.001 ­17.053 <0.001 0.01 0.019

Stock 4 0.086 <0.001 ­15.716 <0.001 0.019 0.090

Stock 5 0.09 <0.001 ­14.996 <0.001 3.624 0.057

Stock 6 0.114 <0.001 ­14.639 <0.001 1.97 0.061

Stock 7 0.178 <0.001 ­16.259 <0.001 15.036 <0.001

Stock 8 0.078 <0.001 ­19.189 <0.001 4.882 0.027

Stock 9 0.094 <0.001 ­16.582 <0.001 0.663 0.016

Stock 10 0.051 0.041 ­19.047 <0.001 7.049 0.008

Stock 11 0.041 0.043 ­13.68 <0.001 7.686 0.006

For verifying the stationarity of all the 11 stocks, ADF test was used.
The p­value for the ADF test showed the absence of unit root for (table 1).
Hence, all the 11 stocks are stationary at level.

For detecting the presence of ARCH effects for all the 11 stocks, the
heteroscedasticity test for ARCH was used. The p­value obtained by using
the Heteroscedasticity test for all the stocks shows the presence of ARCH
effects (table 1). Hence the use of GARCH(1,1) model is appropriate. Here



134 Akash Asthana and Syed Shafi Ahmed

only one lag is considered as the inclusion of higher lags did not yield
parsimonious results.

To estimate the conditional higher moments i.e. covariance, coskewness
and cokurtosis risks (beta, lambda and gamma) for each stock, the
regression was fitted using GARCH(1,1) as the estimation technique. The
entire constant and slope coefficients are displayed below (table 2).

Estimates of the unconditional higher moments i.e. covariance,
coskewness and cokurtosis risks (beta, lambda and gamma) for each stock,
the regression were fitted using GMM as the estimation technique. Rolling
regression using 60 months rolling window was used to estimate the
coefficients of beta, lambda and gamma. The entire constant and slope
coefficients are displayed below (table 2).

Table 2: Coefficients for Unconditional and Conditional
Higher Moment CAPM

Variable Unconditional Higher Moment Conditional Higher Moment
CAPM CAPM

� � � � � � � �

Stock 1 0.036 124.001 ­135.383 ­9407.329 0.031 0.758 ­3.732 7.377

Stock 2 0.018 ­105.085 106.485 8082.756 ­0.001 0.970 ­3.437 ­15.981

Stock 3 ­0.027 30.247 ­28.335 ­2245.864 ­0.002 0.744 0.260 12.110

Stock 4 ­0.049 ­54.036 65.459 4206.578 ­0.007 0.946 ­0.061 ­7.722

Stock 5 0.016 ­62.789 65.539 4886.743 ­0.015 1.026 ­0.548 3.399

Stock 6 0.024 ­158.982 153.928 12224.684 0.015 0.798 ­2.791 20.239

Stock 7 ­0.018 34.503 ­37.302 ­2578.604 ­0.010 0.459 0.655 5.439

Stock 8 0.020 ­109.547 98.632 8479.963 ­0.017 1.333 ­1.204 ­12.623

Stock 9 ­0.076 81.495 ­63.307 ­6150.365 ­0.010 0.393 2.906 26.963

Stock 10 0.015 90.721 ­48.999 ­6829.787 ­0.030 1.062 1.093 ­0.453

Stock 11 ­0.014 ­2.592 2.597 277.437 ­0.005 0.980 ­1.411 ­7.107

For the Unconditional Higher Moment CAPM, the intercept term or
alpha is the return on investment that is not result of general movement in
market. An alpha of zero in CAPM indicates that the particular portfolio is
being tracked by benchmark index and no additional value has been added
or lost in comparison to the broad market. The alpha values of the stocks
were found to be either insignificant or different from zero. The slope term
or beta in CAPM is a measure of the volatility or systematic risk of any
portfolio in comparison to the market. The negative beta (beta < 0) indicates
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inverse relation with the market. The beta values of 6 stocks (Stocks 2, 4, 5,
6, 8 and 11) were found to be negative and insignificant. The coskewness
in CAPM is used to measure the risk related to an asset with regards to
market risk whereas the cokurtosis in CAPM measures the extreme positive
and negative deviations at the same time. The results reported in the above
table reveals that 5 stocks (Stock 1, 3, 7, 9 and 10) stocks showed negative
value of skewness whereas 6 stocks (Stock 2, 4, 5, 6, 8 and 11) showed
positive value of skewness. The positive skewness means the higher
probability of assets having positive returns while negative skewness value
means the higher probability of assets having lower returns simultaneously.
The values of kurtosis for the 6 Stocks (Stock 2, 4, 5, 6, 8, 9 and 11) in the
above table clearly showed that the stocks depict leptokurtic (kurtosis value
> 3) behaviour also described as fat tails which means the data deviates
from normality. The positive skewness/kurtosis in the model reduces the
risk of considered stocks and also lowers the expected return. Similarly,
for the Conditional Higher Moment CAPM, the alpha values of the stocks
were found to be either insignificant or different from zero. The beta values
of all the stocks were found to be significant. The results reported in the
above table reveals that 5 stocks (Stock 4, 5, 6, 8 and 11) stocks showed
negative value of skewness whereas 6 stocks (Stock 1, 2, 3, 7, 9 and 10)
showed positive value of skewness. The values of kurtosis for the 5 Stocks
(Stock 1, 3, 5, 6, 7 and 9) showed leptokurtic behaviour meaning that the
data deviates from normality.

After estimation of the constant and slope coefficients for all the 11
stocks by the two models described, the process of model validation was
carried out using test and train datasets. The train dataset contained 70%
of the data while the test data contained 30% of the dataset. The model
perceived and learned from the trained dataset which is used to train the
model. The test dataset is used only when the model is trained and is
used to obtain an unbiased assessment of the final model. When the model
fitted on the trained dataset also fits the test data well, we can say that
minimal overfitting occurred. The graphical representation of both the
models (Appendix 1 and Appendix 2) showed that the result of
Conditional Higher Moment CAPM is better in comparison to the
Unconditional Higher Moment CAPM. The Mean Standard Error (MSE),
is a measure of the amount of error in given statistical model, measures
the average squared difference between the observed and predicted
values. MSE equals zero when a model has no error but as the model
error increases, MSE increases. MSE calculated for both the models are
listed in the table below (table 3).
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Table 3: MSE for Unconditional and Conditional Higher Moment CAPM

 Train dataset Test dataset

Variables Unconditional Conditional Unconditional Conditional
Higher Moment Higher Moment Higher Moment Higher Moment

CAPM CAPM CAPM CAPM

Stock 1 26.063 0.04 16.216 0.015

Stock 2 19.386 0.021 10.253 0.006

Stock 3 1.387 0.022 8.292 0.008

Stock 4 6.695 0.013 48.371 0.012

Stock 5 6.606 0.024 43.372 0.014

Stock 6 47.902 0.038 31.436 0.01

Stock 7 1.936 0.012 13.844 0.005

Stock 8 21.342 0.037 12.249 0.009

Stock 9 10.667 0.025 69.843 0.04

Stock 10 14.473 0.095 82.278 0.037

Stock 11 0.044 0.004 0.249 0.002

The result in the above tables clearly showed that the MSE values
obtained for both the datasets are lower for the Conditional Higher Moment
CAPM than the Unconditional Higher Moment CAPM. The lower the value
of MSE, the better is the model.

Finally the model selection was then carried out by means of AIC and
BIC values. The AIC and BIC values for all the 11 stocks are listed below
(table 4). The criterion to choose the best model between the two is to
choose the one with minimum AIC/BIC value.

Table 4: Coefficients of AIC and BIC for model selection

Variables Statistics Train dataset Test dataset

Unconditional Conditional Unconditional Conditional
Higher Higher Higher Higher

Moment Moment Moment Moment
CAPM CAPM CAPM  CAPM

Stock 1 AIC 11.312 2.245 ­0.380 ­1.569

BIC 12.828 4.270 ­0.259 ­1.360

Stock 2 AIC 12.542 ­1.302 ­1.049 ­2.464

BIC 14.058 2.722 ­0.928 ­2.256

Stock 3 AIC 13.096 4.590 ­0.952 ­1.931

BIC 14.612 6.614 ­0.831 ­1.723

Stock 4 AIC 9.904 4.949 ­1.479 ­1.509

BIC 11.420 6.974 ­1.358 ­1.300

Stock 5 AIC 12.535 4.428 ­1.058 ­1.461
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BIC 14.051 6.453 ­0.937 ­1.252

Stock 6 AIC 12.100 6.285 ­0.678 ­1.861

BIC 13.616 8.310 ­0.557 ­1.653

Stock 7 AIC 12.651 0.518 ­1.631 ­2.392

BIC 14.167 2.542 ­1.510 ­2.183

Stock 8 AIC 12.047 2.706 ­0.391 ­1.902

BIC 13.563 4.730 ­0.270 ­1.693

Stock 9 AIC 9.349 5.407 ­0.128 ­1.554

BIC 10.865 7.432 ­0.007 ­1.346

Stock 10 AIC 11.083 5.792 0.386 ­0.700

BIC 12.599 7.817 0.507 ­0.492

Stock 11 AIC 8.146 2.874 ­2.606 ­3.420

BIC 9.662 4.898 ­2.485 ­3.212

The results in the above table showed that AIC/BIC values obtained for
both the datasets was minimum for Conditional Higher Moment CAPM
as compared to Unconditional Higher Moment CAPM. The lower the AIC/
BIC value, the better is the model.

5. CONCLUSION

There were some alterations done in the traditional CAPM that measured
the relationship between the risk and return. The altered model consisted
of the higher moments i.e. covariance, coskewness and cokurtosis (beta,
lambda and gamma). The present study focused mainly on the comparison
and selection of the best model between the two models (Unconditional
Higher Moment CAPM and Conditional Higher Moment CAPM). Monthly
data of the stocks listed in S&P BSE 500 index for the period from January
1993 to March 2015 was used for the study.

Consideration of the higher moments in the model was done to study
the detailed analysis of single risk factor instead of identifying more risk
factors as the investors were concerned more about the higher moments of
the returns distribution. Out of the two higher moment models estimated,
the model selection was carried out by means of AIC/BIC. The minimum
AIC/BIC values were obtained for the Conditional Higher Moment CAPM
as compared to Unconditional Higher Moment CAPM. Hence, the
Conditional Higher Moment CAPM is considered as the best model.
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Appendix 1
Graphical representation of Train dataset

Unconditional HM CAPM Conditional HM CAPM
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Appendix 2
Graphical representation of Train dataset

Unconditional HM CAPM Conditional HM CAPM
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